189 research outputs found

    Infra-Red Surface-Plasmon-Resonance technique for biological studies

    Full text link
    We report on a Surface-Plasmon-Resonance (SPR) technique based on Fourier -Transform - Infra - Red (FTIR) spectrometer. In contrast to the conventional surface plasmon technique, operating at a fixed wavelength and a variable angle of incidence, our setup allows the wavelength and the angle of incidence to be varied simultaneously. We explored the potential of the SPR technique in the infrared for biological studies involving aqueous solutions. Using computer simulations, we found the optimal combination of parameters (incident angle, wavelength) for performing this task. Our experiments with physiologically important glucose concentrations in water and in human plasma verified our computer simulations. Importantly, we demonstrated that the sensitivity of the SPR technique in the infrared range is not lower and in fact is even higher than that for visible light. We emphasize the advantages of infra red SPR for studying glucose and other biological molecules in living cells.Comment: 8 pages,8 figure

    Low-field microwave absorption in epitaxial La-Sr-Mn-O films resulting from the angle-tuned ferromagnetic resonance in the multidomain state

    Full text link
    We studied magnetic-field induced microwave absorption in 100-200 nm thick La0.7_{0.7}Sr0.3_{0.3}MnO3_{3} films on SrTiO3_{3} substrate and found a low-field absorption with a very peculiar angular dependence: it appears only in the oblique field and is absent both in the parallel and in the perpendicular orientations. We demonstrate that this low-field absorption results from the ferromagnetic resonance in the multidomain state (domain-mode resonance). Its unusual angular dependence arises from the interplay between the parallel component of the magnetic field that drives the film into multidomain state and the perpendicular field component that controls the domain width through its effect on domain wall energy. The low-field microwave absorption in the multidomain state can be a tool to probe domain structure in magnetic films with in-plane magnetization.Comment: 9 pages, 9 Figure

    Spin wave resonances in La_{0.7}Sr_{0.3}MnO_{3} films: measurement of spin wave stiffness and anisotropy field

    Full text link
    We studied magnetic field dependent microwave absorption in epitaxial La0.7_{0.7}Sr0.3_{0.3}MnO3_{3} films using an X-band Bruker ESR spectrometer. By analyzing angular and temperature dependence of the ferromagnetic and spin-wave resonances we determine spin-wave stiffness and anisotropy field. The spin-wave stiffness as found from the spectrum of the standing spin-wave resonances in thin films is in fair agreement with the results of inelastic neutron scattering studies on a single crystal of the same composition [Vasiliu-Doloc et al., J. Appl. Phys. \textbf{83}, 7343 (1998)].Comment: 15 pages, 7 figures (now figure captions are included

    Nonresonant microwave absorption in epitaxial La-Sr-Mn-O films and its relation to colossal magnetoresistance

    Get PDF
    We study magnetic-field-dependent nonresonant microwave absorption and dispersion in thin La0.7_{0.7}Sr0.3_{0.3}MnO3_{3} films and show that it originates from the colossal magnetoresistance. We develop the model for magnetoresistance of a thin ferromagnetic film in oblique magnetic field. The model accounts fairly well for our experimental findings, as well as for results of other researchers. We demonstrate that nonresonant microwave absorption is a powerful technique that allows contactless measurement of magnetic properties of thin films, including magnetoresistance, anisotropy field and coercive field.Comment: 20 pages, 11 figure

    Depinning frequency in a heavily neutron-irradiated MgB2 sample

    Full text link
    The magnetic-field-induced variations of the microwave surface resistance have been investigated in a heavily neutron-irradiated MgB2 sample, in which the irradiation has caused the merging of the two gaps into a single value. The experimental results have been analyzed in the framework of the Coffey and Clem model. By fitting the experimental data, we have determined the field dependence of the depinning frequency, omega_0, at different values of the temperature. Although the pinning is not particularly effective, the value of omega_0 obtained at low temperatures is considerably higher than that observed in conventional low-temperature superconductors.Comment: 15 pages, 6 figures; to be published in Physica
    corecore